
Package: spreadr (via r-universe)
September 10, 2024

Type Package

Title Simulating Spreading Activation in a Network

Version 0.2.0

Description The notion of spreading activation is a prevalent metaphor
in the cognitive sciences. This package provides the tools for
cognitive scientists and psychologists to conduct computer
simulations that implement spreading activation in a network
representation. The algorithmic method implemented in 'spreadr'
subroutines follows the approach described in Vitevitch, Ercal,
and Adagarla (2011, Frontiers), who viewed activation as a
fixed cognitive resource that could spread among nodes that
were connected to each other via edges or connections (i.e., a
network). See Vitevitch, M. S., Ercal, G., & Adagarla, B.
(2011). Simulating retrieval from a highly clustered network:
Implications for spoken word recognition. Frontiers in
Psychology, 2, 369. <doi:10.3389/fpsyg.2011.00369> and Siew, C.
S. Q. (2019). spreadr: A R package to simulate spreading
activation in a network. Behavior Research Methods, 51,
910-929. <doi:10.3758/s13428-018-1186-5>.

License GPL-3

Encoding UTF-8

Depends Rcpp (>= 0.12.5), R (>= 2.10)

RoxygenNote 7.1.1

Imports Matrix, assertthat, igraph, ggplot2

Suggests dplyr, fs, gganimate, ggraph, gifski, knitr, rmarkdown,
testthat (>= 3.0.0)

LazyData true

VignetteBuilder knitr

LinkingTo Rcpp

NeedsCompilation yes

Author Cynthia Siew [aut, cre], Dirk U. Wulff [ctb], Ning Yuan Lee
[ctb]

1

https://doi.org/10.3389/fpsyg.2011.00369
https://doi.org/10.3758/s13428-018-1186-5

2 pnet

Maintainer Cynthia Siew <cynsiewsq@gmail.com>

Config/testthat/edition 3

Repository https://csqsiew.r-universe.dev

RemoteUrl https://github.com/csqsiew/spreadr

RemoteRef HEAD

RemoteSha c5b09431c7bc539e3d7539d9ac1edac3a2c69dd9

Contents

pnet . 2
pnetm . 3
spreadr . 3

Index 6

pnet Small example of a phonological network as an igraph object

Description

Small example of a phonological network as an igraph object

Usage

pnet

Format

igraph object representing an unweighted undirected graph with 34 vertices and 96 edges. There
are no self-loops.

Source

Ying, Chan & Vitevitch, Michael. (2009). The Influence of the Phonological Neighborhood Clus-
tering Coefficient on Spoken Word Recognition. Journal of experimental psychology. Human per-
ception and performance. 35. 1934-49. 10.1037/a0016902.

pnetm 3

pnetm Small example of a phonological network as an adjacency matrix

Description

Small example of a phonological network as an adjacency matrix

Usage

pnetm

Format

Adjacency matrix representing an unweighted undirected graph with 34 vertices and 96 edges.
There are no self-loops.

Source

Ying, Chan & Vitevitch, Michael. (2009). The Influence of the Phonological Neighborhood Clus-
tering Coefficient on Spoken Word Recognition. Journal of experimental psychology. Human per-
ception and performance. 35. 1934-49. 10.1037/a0016902.

spreadr Simulate spreading activation in a network

Description

Simulate spreading activation in a network

Usage

spreadr(
network,
start_run,
retention = 0.5,
time = 10,
threshold_to_stop = NULL,
decay = 0,
suppress = 0,
include_t0 = FALSE,
create_names = TRUE,
never_stop = FALSE

)

4 spreadr

Arguments

network Adjacency matrix or igraph object representing the network in which to simu-
late spreading activation.

start_run Non-empty data.frame with mandatory columns node, activation; and optional
columns time. If the time column is present, activation is added to node at each
time. Otherwise, the activations are added to their corresponding nodes at t = 0.

retention Number from 0 to 1 (inclusive) or a numeric vector of such numbers of length
equals number of nodes in the network. This represents the proportion of ac-
tivation that remains in the node (not spread) at each time step. Then, 1 -
retention of the activation at each node is spread to neighbouring nodes. If
a numeric vector, retentions are assigned to nodes according to the order given
by V(network) if network is an igraph object or nrow(network) if network
is an adjacency matrix.

time Positive non-zero integer, or NULL. If not NULL, the number of time steps to sim-
ulate before stopping. Otherwise, stop with the threshold_to_stop parameter.

threshold_to_stop

Number or NULL. If not NULL, stop the simulation only when all nodes have
activation value less than threshold_to_stop. Otherwise, stop with the time
parameter.

decay Number from 0 to 1 (inclusive) representing the proportion of activation that is
lost at each time step.

suppress Number representing the maximum amount of activation in a node for it to be
set to 0, at each time step.

include_t0 Boolean flag indicating if activation at t = 0 should be prepended to the output
data.frame. This is FALSE by default for back-compatibility.

create_names Boolean flag indicating if nodes should be automatically named (1:n, where n
is the number of nodes) in case they are missing.

never_stop Boolean flag indicating if the simulation should be stopped if there have been
too many iterations (so that there might be an infinite loop).

Details

At least one of parameters time or threshold_to_stop must be non-NULL. If both are non-NULL,
the simulation stops at the earliest time possible.

The simulation iterates like so: for every i in [0, time],

• Spread activation from node to node

• Decay the activation at each node by the proportion specified by decay

• Set the activation at nodes with activation less than suppress to 0

• Add the activations in start_run with time = i to their corresponding nodes

• Save the activations at each node for output

• Check the terminating conditions time and threshold_to_stop. If any are satisfied, termi-
nate the simulation.

spreadr 5

Value

A data.frame with node, activation and time columns representing the spread of activation in the
network over time.

Examples

make an adjacency matrix and randomly fill some cells with 1s
mat <- matrix(sample(c(0,1), 100, replace=TRUE), 10, 10)
diag(mat) <- 0 # remove self-loops
initial_df <- data.frame(node=1, activation=20, stringsAsFactors=FALSE)
results <- spreadr(mat, initial_df)

head(results, 10)
tail(results, 10)

Index

∗ datasets
pnet, 2
pnetm, 3

data.frame, 4, 5

igraph, 4

pnet, 2
pnetm, 3

spreadr, 3

6

	pnet
	pnetm
	spreadr
	Index

